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Results are presented for investigating the two-dimensional nonstationary tem- 
perature field in an orthotropic bounded cylinder. A method is proposed for 
determining the ratio of the heat conductivity (thermal diffusivity) coeffic- 
ients and the absolute values of the thermal diffusivity along the axes of a 
cylindrical coordinate system. 

Investigations of the physicochemical properties of inhomogeneous and anisotropic 
structures are of practical importance. The thermal state of anisotropic media is described 
by a heat conduction equation of the form 

DT 
c~ ~ = ~ j  T,~j. ( 1 ) 

Analys i s  of  d i f f e r e n t  m o d i f i c a t i o n s  of  t h i s  equa t ion  i s  p r e s e n t e d  in [1] .  For o r tho -  
t r o p i c  media and independence of  the  t he rmophys i ca l  p r o p e r t i e s  (TPP) from the  t empera tu re ,  
(i) simplifies 

aT 
- -  = at T , ~ ,  ( 2 )  
O~ 

i.e., the problem reduces to the solution of a two- or three-dimensional heat conduction 
equation. Such solutions can be found (for ai~a) in [1-4] and for distinct a i in [5, 6]. 

Solutions for isotropic bodies during their heat transfer with a constant-temperature 
medium are examined in the monograph [2]. These solutions were the underpinnings of an ex- 
perimental method to determine the thermal diffusivity coefficient of orthotropic bodies in 
a regular regime [7-9]. The equations (2) are complicated for the heat-transfer of bodies 
with media of different temperatures as well as in the presence of local thermal sources of 
two- and three-dimensional solutions, however the possibilities of practical applications 
of these solutions are expanded substantially [3, 4]. 

The analogy between (2) and the corresponding equation for an isotropic medium does not 
denote a one-to-one correspondence between the thermal states of orthotropic and isotropic 
bodies. Other conditions being equal, the temperature fields and thermal fluxes in ortho- 
tropic bodies depend substantially on the relationship between the TPP in different direc- 
tions. However, there are no publications reflecting these singularities. In this connec- 
tion the necessity occurred for investigation of the temperature field in an orthotropic 
body as a function of its properties. 

It is shown in the example we examined that temperature field formation in orthotropic 
bodies has specifics inherent only in them, whose knowledge will permit a more rational 
organization of experimental TPP investigations for these materials and the necessity to 
correct the technology of their production. Let us present a formulation of the problem. 

A bonded orthotropic cylinder is given with thermal diffusivity coefficients a r and a z 
in the directions of the r and z axes, respectively, of a cylindrical coordinate system 
whose origin is selected at the center of the cylinder. The initial temperature of the body 
mentioned is constant and equal to T0. The cylinder altitude is 2h and the diameter is 2R. 
The cylinder surface end faces at the initial time are maintained at the temperature T c 
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To, while heat transfer according to Newton's law occurs with a medium having the tem?era- 
ture T O at the side surface. It is necessary to find the two-dimensional nonstationacy tem- 
perature field at any point of the orthotropic cylinder, i.e., to solve the equation 

[ OzT 1 0 T ] O r  z Or O2T' OT 
a~ - - - - - +  r + a ~  Oz~ - & ( 3 )  

under  t he  fo l lowing  i n i t i a l  and boundary c o n d i t i o n s  

T(r, z, 0)--To;  (4) 

T(r,+_h, r) = T~; (5) 

OT(r, O, ~)--0 ;  
(6) Oz 

dT (R, z, "~) o~ 
- -  [T(R, z, ~ ) - - T 0 l .  ( 7 )  

A s o l u t i o n  of  (3) under the  c o n d i t i o n s  ( 4 ) - ( 7 ) ,  ob ta ined  by us ing  the  Laplace and Hankel 
i n t e g r a l  t r an s fo rms  has the  form 

Z 

ch (8~ K ] / ~  ~ -  .% / r \  

( z 
~ cos r~,~-~- (8) 

22 -}- 4 (--l)~+iAm Jo 6~ r s o • 
m=~ ~:I p,~ q- 8A K~K z 

where 

• exp [-- (pn 2 @ 5~/<~ 1(2) FoJ, 

Am = J~ (8,~)/8m [$o (Sin) + J~ (Sin)I; 

6m, "#n are roots, respectively, of the characteristic equations 

Jo(Sm) _ 8., 

J1 (8,,) Bie 

cos p,~ : 0. 

The expression (8) obtained consists of two parts: 
the nonstationary component, i.e., O*(r, z, ~,) = Ost(r, z) + @nonst(r, z, r), where 

(9)  

(io) 

the stationary component 8~t and 

z) 
. a ( 6 , . K < <  T 

%t(r, Z)-----1--22AmJo(~)m-~) C~(~mi~]/~a) 
= [ (BiR,  K, Ka); ( i l )  

O ~o~st (r, z, ~) = 4 
~ ( r '~  

n z ~ I  t z ~ l  

p,~ cos P~@) 

2 2 

• exp [-- (p~ + 8~.~ K 2) F%I = / (Bi~, K, K~, F%). 

X 

(12) 

The expression (8) can be used to solve the most diverse applied problems: to conpute 
the temperature fields, heat fluxes, and also to determine the thermophysical properties of 
real objects in the shape of bounded orthotropic cylinders. 

The whole heat transfer process can evidently (see (8)) be separated into three stages: 
initial (purely nonstationary), regular, and stationary. 

In a particular case (under the same boundary conditions and K a = I), a solution Jor a 
bounded cylinder [3, 4] and a solution for an unbounded plate (R § ~), which is analyzed in 
detail in [2], results from (8). 
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O * ~ O , O  6 . . . .  

I 
0 0,8 ~6 2,q F% 

F i g .  i .  / h e  d e p e n d e n c e  0 * ( 0 ,  O, z)  = 
f(Foh) for Bi R = i0: i) K a = 0.i, K = 
0.2; 2) 2 and 0.2; 3) i0 and 0.2; 4) 1 
and 0.6; 5) 2 and 0.6; 6) 5 snf 0.6 

TABLE i. Values of the Stationary Temperature @~t at Points 
of the z = 0 Plane for Different Values of the Parameter K0 
and the Blot Criterion 

lO 

0,I 

B iR Ko O,st 
rlR=O rlR=0,2 rlR=0,4 rlR=0,6 rlR=0,8 r!R~l 

0 ,O1 
0,05 
0,1 
0,2 
0,3 
0,5 
1,0 
2,0 
5,0 

0,01 
0,05 
0,1 
0,2 
0,3 
0,5 
1,0 
2,0 
8, 0 

0,01 
0,05 
0,1 
0,2 
0,3 
0,5 
1,0 

! 2 0  
15~ 0 

0,0000 
0,0000 
0,0000 
0,0034 
0,0378 
0,2322 
0,7213 
0,9739 
0,9999 
1,0000 

0,0000 
0,0000 
0,0000 
0,0020 
0,0257 
0,1847 
0,6619 
0,9600 
0,9999 
1,0000 

0,0000 
0,0000 
0,0000 
0,0000 
0,0008 
0,0087 
0,0692 
0,0%6 
0,7775 
0,9753 

0,0000 
0,0000 
0,0000 
0,0059 
0,0489 
0,2554 
0,7354 
0,9754 
0,9999 
1,0000 

0,0000 
0,0000 
0,0000 
0,0034 
0,0333 
0,2032 
0,6756 
0,9618 
0,9999 
1,0000 

0,0000 
0,0000 
0.0000 
0,000l 
0,0010 
0,0096 
0,0708 
0,2780 
0,7780 
0,9753 

0,0000 
0,0000 
0,0002 
0,0187 
0,0921 
0,3313 
0,7767 
0,9795 
0,9999 
1,0000 

0,0000 
0,0000 
O,O001 
0,0108 
0,0627 
0,2640 
0,7161 
0,9672 
0,9999 
1,0000 

0,0000 
0,000o 
0,0000 
0 0002 
0,00!9 
0,0124 
0,0842 
0,2822 
0,7793 
0,9754 

0,0000 
0,0000 
0,0031 
0,0719 
0,2062 
0,4774 
0,84ll 
0,9858 
0,9999 
1,0000 

0,0000 
0,0000 
0,0012 
0,0415 
0,1405 
0,3827 
0,7811 
0,9753 
1,0000 
t,O000 

0,0000 
0,0000 
0,0001 
0,0010 
0,0043 
0,0182 
0,0842 
0,2892 
0,7814 
0,9757 

0,0009 
0,0026 
0,0616 
0,2932 
0,4845 
0,7104 
0,9201 
0,9930 
1,0000 
1,0000 

0,0002 
0,0006 
0,0244 
0,1702 
0,3347 
0,5802 
0,8644 
0,9850 
0,0000 
0,0000 

0,0000 
0,0000 
0,0004 
0,0040 
0,0104 
0,0281 
0,0963 
0,2989 
0,7844 
0,9760 

1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,0000 
1,O000 
1,0000 
1,0000 

0,0701 
0,2806 
0,4497 
0,6407 
0,7443 
0,8532 
0,9552 
0,995l 
1,0000 
1,0000 

0,0009 
0,0038 
0,0076 
0,0157 
0,0244 
0,0440 
0,1122 
0,3114 
0,7882 
0,9764 

Realization of heat transfer in a constant-temperature medium results in total equili- 
bration of the temperature over the body volume (@~t = 0). In the case under consideration 
the heat transfer occurs with media of different temperatures (see (4)-(7)) and the station- 
ary component may differ from zero. 

It follows from an analysis of (8) that heat propagation in a radial direction (the ap- 
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TABLE 2. Values of the Stationary Temperature O~t at Points 
of Planes for Different z/h, Ko and Bi R = i0 

ei:s t 
Ko z/h 

r/R=O r/R:O,2 r/R:O,4 r/R=O,6 r/R~0,8 r/R~l 

0,2 

2,0 

0 
0,2 
0,4 
0,6 
0,8 
1,0 

0 
0,2 
0,4 
0,6 
0,8 
1,0 

0,0020 
0,0019 
0,0015 
0,0012 
0,0006 
0,0000 

0,960O I 
0,9440 
0,8841 
0,7404 
0,4489 
0.0000 

0,0034 0,0108 
0,0032 0,0102 
0,0027 0,0087 
0,0020 0,0064 
O,OOlO 0,0033 
0,0000 0,0000 

0,9618 
0,9466 
0,8891 
0,7498 
0,4602 
0,0000 

0,9672 
0,9539 
0,9038 
0,7784 
0,4971 
0,0000 

0,0415 
0,0395 
0,0336 
0,0244 
0,0127 
0,0000 

0,9753 
0,9652 
0,9266 
0,8260 
0,570I 
0,0000 

0,1702 
0,1624 
0,1391 
0,I020 
0,0540 
0,0000 

0,9850 
0,9789 
0,9550 
0,8902 
0,6984 
0,0000 

0,6407 
0,6302 
0,5961 
0,5278 
0,3939 
0,0000 

0,9951 
0,9931 
0,9852 
0,9634 
0,8922 
0,0000 

pearance of two-dimensionality) at any point of an orthotropic cylinder depends not only on 
the heat transfer conditions on the side surface and the ratio between the geometric dimen- 

sions but also on the relationship between the thermophysical properties, i.e., on the param- 
eter K a = L I. Such a dependence is looked over quite well in the graphs presented in Fig. 
i. Where all the dependences for the point r = z = 0 for K a <- 1 and K = 0.2 are superposed 
on curve 1 that corresponds to the one-dimensional case and illustrates total equilibration 
of the temperature (T(0, 0, ~) ~ Tc). For K a > i the one-dimensionality at the same point 
is spoiled (curves 2 and 3). As K = h/R increases, the one-dimensionality is also spoiled 
(curve 4). However, even for large K but K a << i the dependences @*(0, 0, ~) are superposed 

on the curve i. 

Therefore, for a given Bi R the variation in the parameters K and K a influences t~e tem- 
perature at any point of the body. Therefore, it is necessary to examine the complex KCKa, 
entering essentially into the solution (8) and playing the same part as the parameter K in 
the two-dimensional solution for an isotropic bounded cylinder. 

Let us call the complex Ko = K#K a the two-dimensionality criterion for the tempe.~ature 
of an orthotropic cylinder of finite size. Then, it can be asserted on the basis of ~3] 
that for any Bi R for Ko < 0.25 on the r = 0 axis in an orthotropic bounded cylinder the excess 
temperature @*(0, z, ~), including the stationary state also, will be described with a suf- 
ficiently small error (0.4%) by the one-dimensional solution for an unbounded plate [2]. 
This later situation is confirmed by data presented in Tables 1 and 2. By using these 
tables a comparative estimate can be made about the agreement of the two-dimensional sta- 
tionary solution (11) for certain points of a finite orthotropic cylinder for different 
values of the criteria Ko, Bi R and the one-dimensional solution for an unbounded plat~. ~ 

(anons t for different r. 

Let us examine the solution (8) in the limit cases when K a + 0 and K a +~: 

COS ]lr~ 

l imO*(r ,  Z, ~ ) = 2  2 ( - - 1 )  ~§ . . . . .  e x p ( - - ~ F o h ) ,  (13)  
Ka~O ~n n=l  

~im~:(/", Z, T): {7 for Z: h~ 
Ka~r for  O ~ z < h .  (14)  

We therefore obtain that as K a § 0 (a r << a z) the temperature field over the whole cylinder 
volume is described by the one-dimensional solutions, i.e., in this case the orthotropic 
solution cylinder is an ideal heat conductor for any heat transfer conditions on the side 
surface, which will be absent in this case. 

As K a § (a r >> a z) the inner layers of the orthotropic cylinder do not heat up anJ all 
the heat "is leaked" to the endface surface. In this case a bounded orthotropic cylirder is 
an ideal heat insulator (refractory). 

Analyzing (8) and (14), the deduction can be made that as K a (K a > I) grows, the height 
of the cylinder inner layer adjoining the z = h plane where the heating occurs (the tempera- 
ture is different from the initial value) diminishes. For sufficiently large K a the height 
of this layer tends to zero. 
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I s 
sti l 2 

o,81 8 z 7 

o,~ q 

o o,8 ~,a 2,~ Ko o W ~,6 e,~ F0~ 

F i g .  2 F i g .  3 

F i g .  2 .  The d e p e n d e n c e  @ s t ( r ,  0 )  = f ( K o )  f o r  B i  R = 10;  i )  
r / R  = 0 . 9 ;  2)  0 .  

Fig. 3. Dependence of the relative contribution of the 
first term of the series (12) to the sum of the whole series 
in percents for Ri R = i0 (6% = f(Foh): i) Ko = 0.3, 2) 0.4, 
3) 0 .5 ,  4) 0 .6 .  

On the other hand, for sufficiently small K a (K a < i) equilibration of the temperature 
to T c at all points of the planes z/h occurs identically (see (13)). This means that ~nly 
in a certain band can K a be determined (for given K) from the results of temperature m~asure- 
ments at given points of an orthotropic cylinder. The boundaries of this K a band depend 
substantially on the values of the parameter K and the coordinates of the temperature mea- 
surement points. 

Analyzing the dependences in Fig. 2, it can be seen that for an 0.5% accuracy in ~aea- 
suring @~t (r, z), the band of Ko determination will lie within the limits 0.25-2.8 fo~: the 
point r/R = 0 and within the limits 0.04-2 for r/R = 0.9. The passage from bands in Ko to 
bands in K a as a function of the value of K is made by means of the formula 

Ka = K~ ( 1 5 )  
Kz 

N u m e r i c a l  d a t a  on t h e  b a n d s  t o  d e t e r m i n e  K a a s  a f u n c t i o n  o f  t h e  p a r a m e t e r  K f o r  d i f f e r e n t  
r / R  a r e  p r e s e n t e d  i n  T a b l e  3.  I t  i s  s e e n  f r o m  t h e  t a b l e  t h a t  i f  we s e l e c t  K = 0 . 2  t h e n  t a k -  
i n g  t h e  t e m p e r a t u r e  m e a s u r e m e n t  a t  two p o i n t s  i n t o  a c c o u n t  (r/R = 0 a n d  r/R = 0 . 9 ) ,  t i l e  b a n d  
t o  d e t e r m i n e  K a w i l l  be  0 . 0 4 - 1 9 6 o  F o r  g i v e n  K a n d  known g i  R e v i d e n t l y  g iR@~t  w i l l  be  a f u n c -  
t i o n  o f  j u s t  K a a t  a n y  p o i n t .  

Therefore, in a stationary thermal regime there is the possibility of determining the 
criterion Ko since @~t(r, z) = F(BiR, Ko) from (ii). However, it is first necessary tc know 
the quantity Bi R that can easily be found experimentally in the regular regime [I0, ii]. 

Let us consider the nonstationary component (12) of the solution (8). The double 
series (12) is rapidly convergent and for definite values of the criteria Ko and Fo h can be 
limited to the first term of this series with a sufficient degree of accuracy, i.e., the reg- 
ular heat transfer regime sets in. The time of regular regime onset (~p) depends substan- 
tially on the value fo Ko: the greater the magnitude of this criterion, the smaller the 
time Tp. This is seen well from the graphs presented in Fig. 3. The graphs are dependences 
of the-relative contribution of the first term of the series (12) to the sum of the whole 
series in percents (for Bi R = i0), i.e., 

1 I % == ~nonst (2)-- @nonst(I term .) 
~7;~nst ~ �9 100% = f (BiR,  Ko,F%).  ( 1 6 )  

Data are presented in [3] about the time of regular thermal regime onset for isotr)pic 
bodies of the simples (classical) shape for heat transfer in a constant-temperature meds 
as a function of the ratio of the geometric dimensions K*. Other conditions being equal, 
the reguiarization time in an anisotropic medium depends substantially on the ratio of ~he 
thermophysical properties. In particular, for an orthotropic bounded cylinder, this depend- 
ence is seen from the determination of the criterion Ko = Kv~-a, if K has a fixed value. 

Let us note that practically all the data on the heat transfer investigation in a 
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TABLE 3. 

Function of the Parameter K (Bi R = i0) 

K 

0,05 
0,10 
0,20 
0,30 
0,40 
0,50 
0,60 
0,70 
0,80 
0,90 

Ranges of K a Determination for Different r/R as a 

r/R~O 
Ko=0,25 i Ko~2,8 

Kama x 

r/R=0,9 {I r/R-=O 

Karat. l lr I K~mi. I K.m~x 

0,64 
0,16 
0,04 
0,018 
0,01 
0,006 
0,004 
0,003 
0,0025 
0,002 

I 
1600[ 
400i 
lOOl 
44i 
251 
16 
11i 
8i 
6[ 
5 

1.00 0.06 
1,10 0,05 
1,20 0,04 
1,30 I 0,037 
1,50 0,03 
2,00 0,016 
2,50 0,01 
3,00 0,007 
5,00 0,0025 

7,84 
6:48 
5,44 
4,64 
3,48 
1,95 
1,25 
0,87 
0,3 

25 3!36 
6,25 784 
1,56 196 
0,69 87 
0,39 49 
0,25 31 
0,17 21,7 
0,13 16 
0,10 12,25 
0,08 9,7 

r/R= 0,9 

I K~ 
Kamin I Kamax 

0,0016 4 
0,0013 3 
0,0011 2,8: 
0,0009 2,4 
0,0007 1,8 
O,0OO4 1 
0,00026 0,64 
0,00018 0,44 
0,00006 0,16 

bounded isotropic cylinder can be utilized when studying the heat transfer of an orthctropic 
cylinder. In this case, values of the quantity Ko must be understood by the quantities K = 

h/R. 

Returning to the investigation of the regular thermal regime, let us note that the de- 
pendence of the expression (i6) o11 the criterion gi R is not essential and, consequently, is 
not considered within the framework of this paper. 

Therefore, in a regular thermal regime the series (12) can be replaced by its first 

term, i.e., 

@*nonst(r, z, ~ ) =  r  (r, z, t ) - - @ s t ( r ,  z ) =  

J0 61 r J1(61) ,~t, cos , % ~ -  e x p [ - - ( ~ - 6 ~ K o 2 ) F o h ]  /(61, No). ( 1 7 )  
~ 4  -~ 2 ] ') 2 8~ [J~ (60 + J~(5,)~ (L~ + 6, KoD 

Then the ratio of @nonst at two different points of an orthotropic cylinder (for insta~ce, 
r i = z = 0, r~ = 0.gR, z = 0) at the identical time ~i > [p will be a function of just the 
first root of the characteristic equation (9): 

~(~ ~---- nonst (0, 0, T1) ] 

(~nonst (r2, 0, TI) J0 (0~Q.~I) = [ (~i)- (18) 

Now 6 l can be found from (18) and then by using (9) the criterion Bi R can be determine(~, and 
therefore, the roots of (9) also. If Bi R = ~, then the roots 6 m are found from J0(6 m) = 0~ 

The heating (cooling) tempo will be determined by the expression 

I n [  O 'n~  0, ~0 ] (~2  ) a z ( 1 9 )  
In.* = @*nonst(0, 0, z.2) = -$--+- 6~Ko h 2 , 

T 2 - -  T 1 

wi~ere T 2 > T~ > ~p. 

Starting from the above exposition, two modifications are proposed for the determina- 
tion of the ratio K a = K i and the thermal diffusivity coefficients a z and a r from the re- 
sults of measuring the excess temperature at two points (r = 0, r = 0.9) of the z = 0 plane 
of an orthotropic cylinder. 

i. If the excess temperature is zero at the point r = z = O in the stationary regime 
(i.e. is described by a one-dimensional solution) and is different from zero (a two-diman- 
sional solution) at the point r = 0.9R, z = 0, then we find a z from (13). We determine the 
first root 61 of the characteristic equation (9) for the point r = 0~ z = 0 in the regu- 
lar thermal regime by using (18). Then we determine the criterion Ko from (19) and using 
(15) we find K a. The thermal diffusivity coefficient along the r axis is determined from 
the formula a r = Kaa z. 

2. If the excess temperature at the point r = z = 0 in the stationary regime is not 

zero (i.e., is described by a two-dimensional solution), then it is first necessary to de- 
termine 61 in the regular thermal regime at the two points r = 0, r = 0.9R; z = 0 by us:ng 
(18) and then the m roots of (9). Afterwards we find Ko and K a by using (ii) and a z from 
(19), and we determine a r as in the preceding case. 

1 3 7 9  



Let us examine the modification when the excess temperatures in the two points mentioned 
equal each other and equal zero. This means that a z >> a r and only determination of a z is 
possible. If these excess temperatures equal each other and equal the value T c - T C, this 
means that a r >> a z (see (14)) and determination of the thermophysical properties is impos- 
sible in this case. The above is characteristic for any plane 0 ! z < h. 

The magnitude of the ratio K a can also be assessed from the value of the stationary 
excess temperature at the point r = z = 0 by selecting K in such a manner that the condition 
of one-dimensionality of the heat propagation would still be satisfied at this point for K a 
= i. Then if the excess temperature equals zero, K a = i. If the excess temperature is not 
zero then K a > i. 

In conclusion, let us note that one specimen is required to determine the ratio of the 
thermophysical properties and the thermal diffusivity coefficients a r and a z in contrast to 
the method presented in [7-9]. 

NOTATION 

@(r, z, ~) = T(r, z, ~)-T0, excess temperature, O*(r, z, ~) = IT c - T(r, z, ~)]/JiT c - 
To) , dimensionless excess temperature; ~, TD, running time and time of regular thermal re- 
gime onset; r, z, running coordinates; k = h/R, ratio between the geometric dimensions of 
the orthotropic cylinder; %r, Az, ar, az, heat conductivity and thermal diffusivity coeffic- 
ients, respectively, in the r and z axis directions; K z = K X = %r/%z = ar/az, ratio of the 
thermophysical properties; Ko = K/Ka, criterion for two-dimensionality of the orthotropic 
cylinder temperature; Bi R = ~R/%r, Blot criterion; Fo h = az~/h 2, Fourier criterion, and 
J0(x), Ji(x), Bessel functions of the first kind. 
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